aboutsummaryrefslogtreecommitdiff
path: root/lib/dyn_tree.c
blob: 095d379d9f456b60c98ba43bc57df8c563cee8fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
// Include our header file
#include <dtree/dyn_tree.h>

// Runtime includes
#include <stdlib.h>
#include <stdio.h>
#include <memory.h>
#include <stdbool.h>

#define RDB_REC_DEF_SIZE    2
#define RDB_REC_MULTIPLY    2
#define REAL_STRLEN(str) (strlen(str) + 1)

dt_err dtree_malloc(dtree *(*data))
{
    (*data) = (dtree*) malloc(sizeof(dtree));
    if(*data == NULL) {
        printf("Creating dtree object FAILED");
        return MALLOC_FAILED;
    }

    memset(*data, 0, sizeof(dtree));

    (*data)->type = UNSET;
    return SUCCESS;
}

dt_err dtree_resettype(dtree *data)
{
    if(data->type == LITERAL) {
        if(data->payload.literal) free(data->payload.literal);
    } else if(data->type == RECURSIVE || data->type == PAIR) {

        /* Iterate over all children and clear them */
        int i;
        dt_err err;
        for(i = 0; i < data->size; i++) {
            err = dtree_free(data->payload.recursive[i]);
            if(err) return err;
        }
    }

    /* Set the data type to unset */
    data->type = UNSET;
    data->size = 0;
    data->used = 0;

    return SUCCESS;
}

dt_err dtree_addliteral(dtree *data, const char *literal, size_t length)
{
    /* Make sure we are a literal or unset data object */
    if(data->type != UNSET)
        if(data->type != LITERAL) return INVALID_PAYLOAD;

    /* Get rid of previous data */
    if(data->payload.literal) free(data->payload.literal);

    /* Allocate space for the data */
    char *tmp = (char *) malloc(sizeof(char) * length);
    if(tmp == NULL) {
        printf("Allocating space for literal data FAILED");
        return MALLOC_FAILED;
    }

    /* Copy the string over and store it in the union */
    strcpy(tmp, literal);
    data->payload.literal = tmp;
    data->type = LITERAL;
    data->size = length;
    data->used = length;

    return SUCCESS;
}


dt_err dtree_addpointer(dtree *data, void *ptr)
{
    if(data->type != UNSET)
        if(data->type != POINTER) return INVALID_PAYLOAD;

    data->payload.pointer = ptr;
    data->type = POINTER;
    data->size = sizeof(ptr);
    data->used = sizeof(*ptr);

    return SUCCESS;
}


dt_err dtree_addnumeral(dtree *data, int numeral)
{
    /* Make sure we are a literal or unset data object */
    if(data->type != UNSET)
        if(data->type != NUMERAL) return INVALID_PAYLOAD;

    data->payload.numeral = numeral;
    data->type = NUMERAL;
    data->size = sizeof(int);
    data->used = sizeof(int);
    return SUCCESS;
}

dt_err dtree_addrecursive(dtree *data, dtree *(*new_data))
{
    /* Make sure we are a literal or unset data object */
    if(data->type != UNSET)
        if(data->type != RECURSIVE) return INVALID_PAYLOAD;

    dt_err err;

    /* This means elements already exist */
    if(data->size > 0) {

        /* Used should never > size */
        if(data->used >= data->size) {
            data->size += RDB_REC_MULTIPLY;

            // TODO Use Realloc
            dtree **tmp = (dtree**) malloc(sizeof(dtree*) * data->size);
            memcpy(tmp, data->payload.recursive, sizeof(dtree*) * data->used);

            /* Free the list WITHOUT the children! */
            free(data->payload.recursive);
            data->payload.recursive = tmp;
        }

    /* This means the data object is new */
    } else {
        dtree **tmp = (dtree**) malloc(sizeof(dtree*) * data->size);
        data->payload.recursive = tmp;
        data->type = RECURSIVE;
        data->used = 0;
        data->size = RDB_REC_DEF_SIZE;
    }

    err = dtree_malloc(new_data);
    if(err) return err;

    /* Reference the slot, assign it, then move our ctr */
    data->payload.recursive[data->used] = *new_data;
    data->used++;

    return SUCCESS;
}


dt_err dtree_addpair(dtree *data, dtree *(*key), dtree *(*value))
{
    /* Make sure we are a literal or unset data object */
    if(data->type != UNSET) return INVALID_PAYLOAD;

    dt_err err;

    /* Malloc two nodes */
    err = dtree_malloc(key);
    if(err) goto cleanup;

    err = dtree_malloc(value);
    if(err) goto cleanup;

    /** Malloc space for PAIR */
    data->size = 2;
    dtree **tmp = (dtree**) malloc(sizeof(dtree*) * data->size);
    if(!tmp) goto cleanup;

    data->payload.recursive = tmp;

    { /* Assign data to new array */
        data->payload.recursive[data->used] = *key;
        data->used++;
        data->payload.recursive[data->used] = *value;
        data->used++;
    }

    /* Assign our new type and return */
    data->type = PAIR;
    return SUCCESS;

    /* Code we run when we can't allocate structs anymore */
    cleanup:
    free(*key);
    free(*value);
    free(tmp);
    return MALLOC_FAILED;
}

void recursive_print(dtree *data, const char *offset)
{
    dt_uni_t type = data->type;

    switch(type) {
        case UNSET:
            printf("[NULL]\n");
            break;
        case LITERAL:
            printf("%s['%s']\n", offset, data->payload.literal);
            break;
        case NUMERAL:
            printf("%s[%d]\n", offset, data->payload.numeral);
            break;
        case PAIR:
            {
                dt_uni_t k_type = data->payload.recursive[0]->type;
                dt_uni_t v_type = data->payload.recursive[1]->type;

                if(k_type == LITERAL) printf("%s['%s']", offset, data->payload.recursive[0]->payload.literal);
                if(k_type == NUMERAL) printf("%s[%d]", offset, data->payload.recursive[0]->payload.numeral);

                char new_offset[REAL_STRLEN(offset) + 2];
                strcpy(new_offset, offset);
                strcat(new_offset, "  ");

                if(k_type == RECURSIVE || k_type == PAIR) recursive_print(data->payload.recursive[0], new_offset);

                /* Print the value now */

                if(k_type == LITERAL) printf(" => ['%s']\n", data->payload.recursive[1]->payload.literal);
                if(k_type == NUMERAL) printf(" => [%d]\n", data->payload.recursive[1]->payload.numeral);

                if(k_type == RECURSIVE || k_type == PAIR) recursive_print(data->payload.recursive[1], new_offset);
            }
            break;

        case RECURSIVE:
        {
            int i;
            printf("%s[RECURSIVE]\n", offset);
            for(i = 0; i < data->used; i++) {
                dt_uni_t type = data->payload.recursive[i]->type;


                char new_offset[REAL_STRLEN(offset) + 2];
                strcpy(new_offset, offset);
                strcat(new_offset, "  ");

                if(type == LITERAL || type == NUMERAL) {
                    recursive_print(data->payload.recursive[i], new_offset);
                    continue;
                }

                if(type == RECURSIVE)
                {
                    recursive_print(data->payload.recursive[i], new_offset);
                    continue;
                }

                if(type == PAIR) {
                    printf("%s[PAIR] <==> ", new_offset);
                    recursive_print(data->payload.recursive[i], new_offset);
                }
            }
            break;
        }

        default:
            break;

    }
}

void dtree_print(dtree *data)
{
    recursive_print(data, "");
}

dt_err dtree_get(dtree *data, void *(*val))
{
    if(data->type == LITERAL) *val = (char*) data->payload.literal;
    if(data->type == NUMERAL) *val = (int*) &data->payload.numeral;
    if(data->type == RECURSIVE || data->type == PAIR)
        *val = (dtree*) data->payload.recursive;

    return SUCCESS;
}

dt_err dtree_free(dtree *data)
{
    if(data == NULL) return SUCCESS;

    if(data->type == LITERAL) {
        if(data->payload.literal) free(data->payload.literal);

    } else if(data->type == RECURSIVE || data->type == PAIR) {
        int i;
        dt_err err;
        for(i = 0; i < data->size; i++) {
            err = dtree_free(data->payload.recursive[i]);
            if(err) return err;
        }

        free(data->payload.recursive);

    } else if(data->type == POINTER) {
        if(data->payload.pointer) free(data->payload.pointer);
    }

    free(data);
    return SUCCESS;
}

dt_err dtree_free_shallow(dtree *data)
{
    if(data == NULL) return SUCCESS;

    if(data->type == LITERAL) {
        if(data->payload.literal) free(data->payload.literal);
    } else if(data->type == RECURSIVE || data->type == PAIR) {
        int i;
        dt_err err;
        for(i = 0; i < data->size; i++) {
            err = dtree_free(data->payload.recursive[i]);
            if(err) return err;
        }

        free(data->payload.recursive);
    }

    free(data);
    return SUCCESS;
}

const char *dtree_dtype(dtree *data)
{
    switch(data->type) {
        case LITERAL:       return "Literal";
        case NUMERAL:       return "Numeral";
        case RECURSIVE:     return "Recursive";
        case PAIR:          return "Pair";
        case POINTER:       return "Pointer";
        default:            return "Unknown";
    }
}

/**************** PRIVATE UTILITY FUNCTIONS ******************/


/**
 * Small utility function that checks if a datablock is valid to write into.
 * Potentially releases previously owned memory to prevent memory leaks
 *
 * @param data The dtree object to check
 * @return
 */
dt_err data_check(dtree *data)
{
    /* Check if the data block has children */
    if(data->type == RECURSIVE)
    {
        printf("Won't override heap payload with data!");
        return INVALID_PAYLOAD;
    }

    /* Free the existing string */
    if(data->type == LITERAL)
    {
        if(data->payload.literal) free(data->payload.literal);
    }

    return SUCCESS;
}